Inverse Transform Sampling

  1. $x \sim Unif(0,1)$
  2. $y=P_y^{-1}(x)$

COSE382 Lec5)

  1. Let $U\sim Unif(0,1)$ and $X=F^{-1}(U)$. Then $X$ is a r.v. with CDF $F$.
  2. Let $X$ be an r.v. with CDF $F$. Then $F(X) \sim Unif(0,1)$.

★ MLE for an MVN: empirical mean and covariance (MLPP 4.1.3.)

$$ \hat {\mathbf h}{mle}=\frac{1}{N}\sum^N{i=1}\mathbf x_i\triangleq \bar {\mathbf x} $$

$$ \hat {\mathbf\Sigma}{mle}=\frac{1}{N}\sum^N{i=1}(\mathbf x_i-\bar{\mathbf x})(\mathbf x_i-\bar{\mathbf x})^\top=\frac{1}{N}(\sum^N_{i=1}\bar{\mathbf x_i} \bar{\mathbf x_i}^\top)-\bar{\mathbf x}\bar{\mathbf x}^\top $$

Gaussian Mixture Model (GMM)

Kernel Density Estimation (KDE)

$$ p(\mathbf x|\mathcal D)=\frac{1}{N}\sum^N_{i=1} \mathcal N (\mathbf x| \mathbf x_i, \sigma^2\mathbf I) $$

$$ \hat p(x)=\frac{1}{N}\sum^N_{i=1} \kappa_h(\mathbf x - \mathbf x_i) $$