Definition
A level $1-\alpha$ confidence interval for parameter $\theta$ is an interval $[\hat\theta_L, \hat\theta_U]$, where $\hat\theta_L$ and $\hat\theta_U$ are found from data s.t.
$$ P_\theta(\hat\theta_L \leq \theta \leq \hat\theta_U) = 1-\alpha $$
A pivotal quantity (pivot) is a function of the sample measurements and unknown parameter $\theta$, ($\theta$ is the only unknown parameter) and its probability distribution does not depend on $\theta$.
If $g(x_1,...,x_n;\theta)$ is pivot, Find $c_1$ and $c_2$ s.t.
$$ P_\theta(c_1 \leq g(X_1,...,X_n) \leq c_2) = 1-\alpha $$
⇒ Restate in the form of $P_\theta(\hat\theta_L \leq \theta \leq \theta_U) = 1-\alpha$
Slutsky’s Theorem
$U_n \overset{D}{\to} U$ and $W_n \overset{p}{\to} 1 \Rightarrow U_n/W_n \overset{D}{\to} U$