Definition
$$ B(\hat \theta)=E(\hat \theta)-\theta $$
$\hat\theta$ is an unbiased estimator of $\theta$ if $E_\theta(\hat\theta)=\theta$ for all $\theta$, otherwise, biased.
Definition (Mean Square Error)
$$ MSE(\hat\theta)=E_\theta[(\hat\theta-\theta)^2]=V(\hat\theta)+(B(\hat\theta))^2 $$
The smaller, the better.
Definition
$$ eff(\hat\theta_1, \hat\theta_2)=\frac{V(\hat\theta_2)}{V(\hat\theta_1)} $$