$E(aX+b)=aE(X)+b$
$Var(X)=E(X^2)-\{E(X)\}^2$
$Var(aX+b)=a^2Var(X)$
$Cov(X,Y)=E(XY)-E(X)E(Y)$
$Cov(X,X)=Var(X)$
$Cov(aX+b,cY+d)=acCov(X,Y)$
$Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)$
$X \sim Possion(\lambda)$
$E(X)=Var(X)=\lambda$
$E[X(X-1)(X-2)...(X-k)]=\lambda^{k+1}$
$X_i \sim Poisson(\lambda_i)$
$\sum^n_iX_i \sim Poisson(\sum^n_i\lambda_i)$
$Gamma(\alpha_1, \beta) + Gamma(\alpha_2, \beta)=Gamma(\alpha_1+\alpha_2, \beta)$
$Y \sim Exponential(\theta)=Gamma(1, \theta)$
$Y_N =:Y_1 +...+Y_n=Gamma(n,\theta)$
$cY_N \sim Gamma(n,c\theta)$
$Z \sim N(0,1)$
$Z^2 \sim \chi^2(1)=Gamma(1/2,2)$
$Z_1 \sim N(\mu_1, \sigma^2), Z_2 \sim N(\mu_2, \sigma^2)$
$Z_1 \pm Z_2 \sim N(\mu_1 \pm \mu_2, \sigma^2)$
$X \sim Geo(p)$
$\sum^r_iX_i \sim NegBin(r,p)$